Role of scleraxis in mechanical stretch-mediated regulation of cardiac myofibroblast phenotype.

نویسندگان

  • Patricia L Roche
  • Raghu S Nagalingam
  • Rushita A Bagchi
  • Nina Aroutiounova
  • Breanna M J Belisle
  • Jeffrey T Wigle
  • Michael P Czubryt
چکیده

The phenotype conversion of fibroblasts to myofibroblasts plays a key role in the pathogenesis of cardiac fibrosis. Numerous triggers of this conversion process have been identified, including plating of cells on solid substrates, cytokines such as transforming growth factor-β, and mechanical stretch; however, the underlying mechanisms remain incompletely defined. Recent studies from our laboratory revealed that the transcription factor scleraxis is a key regulator of cardiac fibroblast phenotype and extracellular matrix expression. Here we report that mechanical stretch induces type I collagen expression and morphological changes indicative of cardiac myofibroblast conversion, as well as scleraxis expression via activation of the scleraxis promoter. Scleraxis causes phenotypic changes similar to stretch, and the effect of stretch is attenuated in scleraxis null cells. Scleraxis was also sufficient to upregulate expression of vinculin and F-actin, to induce stress fiber and focal adhesion formation, and to attenuate both cell migration and proliferation, further evidence of scleraxis-mediated regulation of fibroblast to myofibroblast conversion. Together, these data confirm that scleraxis is sufficient to promote the myofibroblast phenotype and is a required effector of stretch-mediated conversion. Scleraxis may thus represent a potential target for the development of novel antifibrotic therapies aimed at inhibiting myofibroblast formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical stretch up-regulates the B-type natriuretic peptide system in human cardiac fibroblasts: a possible defense against transforming growth factor-β mediated fibrosis

BACKGROUND Mechanical overload of the heart is associated with excessive deposition of extracellular matrix proteins and the development of cardiac fibrosis. This can result in reduced ventricular compliance, diastolic dysfunction, and heart failure. Extracellular matrix synthesis is regulated primarily by cardiac fibroblasts, more specifically, the active myofibroblast. The influence of mechan...

متن کامل

TGFβ1 regulates Scleraxis expression in primary cardiac myofibroblasts by a Smad-independent mechanism.

In cardiac wound healing following myocardial infarction (MI), relatively inactive resident cardiac fibroblasts phenoconvert to hypersynthetic/secretory myofibroblasts that produce large quantities of extracellular matrix (ECM) and fibrillar collagen proteins. Our laboratory and others have identified TGFβ1 as being a persistent stimulus in the chronic and inappropriate wound healing phase that...

متن کامل

Syndecan-4 signaling via NFAT regulates extracellular matrix production and cardiac myofibroblast differentiation in response to mechanical stress.

Pressure overload activates cardiac fibroblasts leading to excessive production of extracellular matrix which may contribute to compromised heart function. The activated fibroblast acquires smooth muscle-like features such as expression of smooth muscle α-actin (SMA) and SM22 and is therefore referred to as myofibroblast. The molecular mechanisms underlying mechanical stress-induced myofibrobla...

متن کامل

The Ski-Zeb2-Meox2 pathway provides a novel mechanism for regulation of the cardiac myofibroblast phenotype.

Cardiac fibrosis is linked to fibroblast-to-myofibroblast phenoconversion and proliferation but the mechanisms underlying this are poorly understood. Ski is a negative regulator of TGF-β-Smad signaling in myofibroblasts, and might redirect the myofibroblast phenotype back to fibroblasts. Meox2 could alter TGF-β-mediated cellular processes and is repressed by Zeb2. Here, we investigated whether ...

متن کامل

Cyclic mechanical stretch reduces myofibroblast differentiation of primary lung fibroblasts.

In lung fibrosis tissue architecture and function is severely hampered by myofibroblasts due to excessive deposition of extracellular matrix and tissue contraction. Myofibroblasts differentiate from fibroblasts under the influence of transforming growth factor (TGF) β(1) but this process is also controlled mechanically by cytoskeletal tension. In healthy lungs, the cytoskeleton of fibroblasts i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 311 2  شماره 

صفحات  -

تاریخ انتشار 2016